Styrofoam Biodegradation By Soil Bacteria Isolated From Landfill Site In Hospital: Literature Review
DOI:
https://doi.org/10.59585/ijhs.v3i1.587Keywords:
Bacteria, Degradation, PolystyreneAbstract
Introduction: Styrofoam is commonly used in food and beverage packaging. Styrofoam or polystyrene is made from styrene and benzene. The migration of benzene from packaging materials into foods can cause various diseases. One effort to reduce styrofoam waste is possible by searching for bacteria that can degrade styrofoam naturally. Potential source of place where the bacteria will be discovered is the landfill site in hospital. Material and Methods: This research applied exploratory methods through descriptive qualitative analysis. The stages of the study consisted of biodegradation testing using the Winogradsky method, calculation of the percentage of dry weight loss of Styrofoam, physical analysis using Scanning Electron Microscope (SEM), and analysis of changes in functional groups using FTIR. This study discovered 4 species of polystyrene degrading bacteria, namely Pseudomonas aeruginosa, Bacillus amyloliquefaciens, Bacillus cereus and Bacillus firmus. Results: The percentage of dry weight reduction of polystyrene was shown in the eighth week which reached 18.23% and physical analysis by Scanning Electron Microscope (SEM) indicated that the process of degradation by soil bacteria resulted in formation of pores on the surface of styrofoam. Conclusion: Functional group analysis produced a simpler functional groups after the degradation as marked by the appearance of C-O functional groups at wavenumber of 1,030.02 cm-1. The use of these polystyrene degrading bacteria from Sarimukti landfill can be recommended as an environmentally friendly method for reducing styrofoam waste.
Downloads
References
Ainiyah, S. I., & Setiawan, I. (2024). Potensi Bakteri Sedimen Mangrove Dalam. Reka Lingkungan, 12(1), 1–10.
Bidoia, E. D., Claro-sp, R., & Montagnolli, R. N. (2021). Biodegradation, Pollutants and Bioremediation Principles. In Biodegradation, Pollutants and Bioremediation Principles. https://doi.org/10.1201/9780429293931
Cappelletti, M., Presentato, A., Piacenza, E., Firrincieli, A., Turner, R. J., & Zannoni, D. (2020). Biotechnology of Rhodococcus for the production of valuable compounds. Applied Microbiology and Biotechnology, 104(20), 8567–8594. https://doi.org/10.1007/s00253-020-10861-z
Cavalier, H., Trasande, L., & Porta, M. (2023). Exposures to pesticides and risk of cancer: Evaluation of recent epidemiological evidence in humans and paths forward. International Journal of Cancer, 152(5), 879–912. https://doi.org/10.1002/ijc.34300
Chaudhary, A. K., & Vijayakumar, R. P. (2020). Studies on biological degradation of polystyrene by pure fungal cultures. Environment, Development and Sustainability, 22(5), 4495–4508. https://doi.org/10.1007/s10668-019-00394-5
Devi, D., Gupta, K. K., Chandra, H., Sharma, K. K., Sagar, K., Mori, E., de Farias, P. A. M., Coutinho, H. D. M., & Mishra, A. P. (2023). Biodegradation of low-density polyethylene (LDPE) through application of indigenous strain Alcaligenes faecalis ISJ128. Environmental Geochemistry and Health, 45(12), 9391–9409. https://doi.org/10.1007/s10653-023-01590-z
Duc, H. D., Thuy, N. T. D., Thanh, L. U., Tuong, T. D., & Oanh, N. T. (2022). Degradation of Diuron by a Bacterial Mixture and Shifts in the Bacterial Community During Bioremediation of Contaminated Soil. Current Microbiology, 79(1), 1–11. https://doi.org/10.1007/s00284-021-02685-5
Erlambang, B. P. D., Oktarianti, R., & Wathon, S. (2019). Mikroorganisme Potensial Sebagai Agen Hayati Pendegradasi Limbah Sampah Plastik. Bio Trends, 10(2), 18–26. https://terbitan.biotek.lipi.go.id/index.php/biotrends/article/download/268/228
Kim, H. W., Jo, J. H., Kim, Y. Bin, Le, T. K., Cho, C. W., Yun, C. H., Chi, W. S., & Yeom, S. J. (2021). Biodegradation of polystyrene by bacteria from the soil in common environments. Journal of Hazardous Materials, 416(May), 126239. https://doi.org/10.1016/j.jhazmat.2021.126239
Lim, B. K. H., & Thian, E. S. (2022). Biodegradation of polymers in managing plastic waste — A review. Science of the Total Environment, 813(1), 151880. https://doi.org/10.1016/j.scitotenv.2021.151880
Maisyaroh, D., Mayasari, U., & Nasution, R. (2024). Potensi Bakteri Bacillus subtilis Sebagai Agen Biodegrasi. Biogenerasi Jurnal Pendidikan Biologi, 9(1), 700–705.
Meng, T. K., Kassim, A. S. B. M., Razak, A. H. B. A., & Fauzi, N. A. B. M. (2021). Bacillus megaterium: a Potential and an Efficient Bio-Degrader of Polystyrene. Brazilian Archives of Biology and Technology, 64(6), 1–12. https://doi.org/10.1590/1678-4324-2021190321
Niko, D. D., & Basuki, E. A. (2022). Pengaruh Penambahan Zirkonium pada Paduan Fe-17Ni-17Cr-7, 7Al-4Cu Terhadap Oksidasi Isotermal. Jurnal TEDC, 16(3).
Putcha, J. P., & Kitagawa, W. (2024). Polyethylene Biodegradation by an Artificial Bacterial Consortium: Rhodococcus as a Competitive Plastisphere Species. Microbes and Environments, 39(3), 1–10. https://doi.org/10.1264/jsme2.ME24031
Ricardo Barra, S. A. L., & STAP. (2018). GEF Council Meeting June 24 – 26, 2018 Da Nang, Viet Nam. PLASTICS AND THE CIRCULAR ECONOMY, 1–23.
Sintim, H. Y., Bandopadhyay, S., English, M. E., Bary, A., Liquet y González, J. E., DeBruyn, J. M., Schaeffer, S. M., Miles, C. A., & Flury, M. (2021). Four years of continuous use of soil-biodegradable plastic mulch: impact on soil and groundwater quality. Geoderma, 381(February 2020), 114665. https://doi.org/10.1016/j.geoderma.2020.114665
Ural, N. (2021). The significance of scanning electron microscopy (SEM) analysis on the microstructure of improved clay: An overview. Open Geosciences, 13(1), 197–218. https://doi.org/10.1515/geo-2020-0145
Wahyuni, M., Kokoh, R., & Haryo, P. (2024). Analisis Timbulan dan Komposisi Sampah Permukiman sebagai Upaya Minimalisasi Timbulan Sampah Menuju Zero Waste di RW 5 Jambangan Surabaya. Teknik Sipil Dan Lingkungan, 6(2), 273–281.
Wang, W., Yao, S., Zhao, Z., Liu, Z., Li, Q. X., Yan, H., & Liu, X. (2024). Degradation and potential metabolism pathway of polystyrene by bacteria from landfill site. Environmental Pollution, 343(December 2023), 123202. https://doi.org/10.1016/j.envpol.2023.123202
Zhang, N., Ding, M., & Yuan, Y. (2022). Current Advances in Biodegradation of Polyolefins. Microorganisms, 10(8), 1–16. https://doi.org/10.3390/microorganisms10081537
Ziad, M., Khan, S., & Ali, G. (2022). Thermal Pyrolysis of Individual and Mixed Plastic Waste of Polypropylene, Polyethylene and Polystyrene. SSRN Electronic Journal, 3(1), 5–32. https://doi.org/10.2139/ssrn.4091209
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Heri Shatriadi Candra Putra, Norhashima Abd Rashid, Faridah Mohd Said

This work is licensed under a Creative Commons Attribution 4.0 International License.